板状刚玉粒度和加入量对高铁镁砂-烧结刚玉复合材料性能的影响

林 鑫¹⁾ 李 勇¹⁾ 李燕京¹²⁾ 张军杰²⁾ 高长贺³⁾ 张积礼³⁾

1) 北京科技大学 材料科学与工程学院 北京 100083

2) 北京通达耐火技术股份有限公司 北京 100085

3) 巩义通达中原耐火技术有限公司 河南巩义 451200

摘 要: 以粒度为 3~1、≤1、≤0.088 mm 的高铁镁砂, ≤0.088 mm 的高纯镁砂为主要原料,分别研究了不同加入量(质量分数分别为 3%、6%、9%、12%、15%)和不同粒度(3~2、2~1、≤1 mm)的烧结板状刚玉对试样性能的影响,并分析其物相组成和显微结构。结果表明: 当烧结板状刚玉细粉加入量为 6%(w)时,试样的显气孔率 16%,体积密度 2.99 g•cm⁻³,常温耐压强度 80.9 MPa,荷重软化温度 1 609 ℃,抗热震性达到 20次,综合性能最好;改变加入刚玉的粒度,可以控制刚玉反应速度,同时影响高铁镁砂中 Fe 的扩散;铁在方镁石中固溶度大,高铁镁砂的引入可以起到方镁石改性的作用;由于铁氧化物的存在,高铁镁砂-刚玉体系在高温下易于促进镁铝尖晶石和铁铝尖晶石固溶体的形成。

关键词: 高铁镁砂; 烧结刚玉; 镁铝尖晶石; 铁铝尖晶石; 水泥窑

中图分类号: TQ175 文献标识码: A DOI: 10. 3969 / j. issn. 1001 – 1935. 2014. 06. 009

为了解决水泥窑用传统镁铬砖带来的六价铬污 染问题 国内无铬碱性材料的生产和应用已取得了长 足的进展^[1-3]。氧化镁-铁铝尖晶石砖是将方镁石 (MgO)和预合成铁铝尖晶石(FeAl₂O₄)混合成型,在 一定的工艺下高温烧成的^[4] 由于其具有良好的挂窑 皮性、抗碱侵蚀性、柔韧性等 得到了科研工作者的广 泛研究 并且在国内水泥窑烧成带和过渡带广泛应 用^[5]。张君博等^[6]报道了以铁鳞、 Fe_2O_3 粉及 Al_2O_3 粉为原料,分别采用烧结法、电熔法进行铁铝尖晶石 的合成。陈俊红等^[7]采用烧结工艺在埋炭气氛下合 成出了较为均匀、纯净的铁铝尖晶石。周勇等^[8]以电 熔合成铁铝尖晶石-刚玉复合材料和电熔镁砂为原 料 制得了铁铝尖晶石-镁铝尖晶石复合材料。Fumihito Ozeki^[9]、Isao Nimura^[10]等均研究了添加 Fe₂O₃ 的 MA 尖晶石砖,与原来的 MA 尖晶石砖相比,其强度、 抗组织脆化性、粘附性都有所提高。

方镁石-铁铝尖晶石砖存在的主要问题:(1)铁 铝尖晶石多以电熔合成为主,工艺较为复杂且难以控 制,成本较高;(2)在铁铝尖晶石原料的合成过程中, 很难控制合成的 FeO・Al₂O₃中不含有 FeO・Fe₂O₃ 及 Fe₂O₃等其他化合物,亦无有效手段检测原料中铁 铝尖晶石含量;(3)随着未来我国固体废物水泥窑共 文章编号:1001-1935(2014)06-0432-04

处置技术的开发和应用,废物的焚烧将使窑内气氛复 杂化,而在高温和氧化-还原气氛下,铁铝尖晶石中的 Fe存在变价,铁铝尖晶石不能稳定存在。方镁石-铁 铝尖晶石砖能否满足我国未来水泥窑烧成带和过渡 带的长寿和稳定运行值得探究。而高铁镁砂与烧结 刚玉复合后具有高温稳定性等优点,水泥窑用高铁镁 砂-烧结刚玉复合耐火材料未见系统报道。在本工作 中,主要研究了板状刚玉对高铁镁砂-烧结刚玉复合 材料性能的影响。

1 试验

以粒度为3~1、≤1 mm 的高铁镁砂 3~2、2~1、 ≤1 mm 的烧结板状刚玉为骨料 ,分别引入高铁镁砂 粉和高纯镁砂粉(≤0.088 mm) ,其化学组成见表1。

按表 2 和表 3 配料,以亚硫酸纸浆废液为结合剂 混练均匀后,在 630 t 摩擦压力机下压制成型为 198 mm × 211 mm × 76 mm 的砖样,经 110 ℃ 干燥 24 h

* 林鑫:男,1991年生,硕士研究生。
 E-mail:935955136@qq.com
 指导老师:李勇,男,1964年生,教授。
 E-mail: lirefractory@vip.sina.com
 收稿日期:2014-01-15

编辑: 周丽红

432 NAHUO CALLAO / 耐火材料 2014 / 6 http://www.nhcl.com.cn

后,试样 A1—A5 在 1 475 ℃ 隧道窑中保温 10 h 烧 成;试样 B1—B4 在 1 580 ℃ 电炉中保温 4 h 烧成。 表1 原料的化学组成

Table 1	Chemical	compositions	of	starting	materials
---------	----------	--------------	----	----------	-----------

日生			w /	%		
尿科	MgO	Al_2O_3	$\mathrm{Fe}_2\mathrm{O}_3$	SiO_2	CaO	Na_2O
高铁镁砂	93.12		5.13	0.64	1.01	
高纯镁砂	96.99		0.63	0.93	1.39	
板状刚玉		99.56	0.11	0.04		0.25

分别利用 GB/T 2997—2000、GB/T 5072—2008、 GB/T 5989—2008 和 YB/T 376.1—1995 测试试样的 显气孔率和体积密度、常温耐压强度、荷重软化温度 和抗热震性。利用 XRD 测定 1 580 ℃烧后试样的物 相组成;用 SEM 和 EDS 观察 1 580 ℃烧后试样的显 微结构和微区成分。

表2 不同板状刚玉加入量的试样配比

Table 2 Formulations of specimens A1—A5 with different tabular corundum additions

原料				w/%		
		A1	A2	A3	A4	A5
	$3 \sim 1 \text{ mm}$	48	48	48	48	48
高铁 镁砂	≤ 1 mm	24	24	24	24	24
	$\leqslant 0.088 \text{ mm}$	25	22	19	16	13
板状刚玉粉 (≤0.088 mm)		3	6	9	12	15

表 3 不同板状刚玉粒度的试样配比 Table 3 Formulations of specimens B1—B4 with different

particle sizes of tabular corundum							
	百支	w/%					
	示 ↑	B1 B2 B3					
	$3 \sim 2 \text{ mm}$	0	0	0	6		
板状刚玉	$2 \sim 1 \text{ mm}$	0	0	6	0		
	≤1 mm	0	6	0	0		
	≤0.088 mm	6	0	0	0		
高铁镁砂	$3 \sim 1 \text{ mm}$	48	48	42	42		
	≤1 mm	24	18	24	24		
高纯镁砂粉	≤0.088 mm	22	28	28	28		

2 结果与讨论

2.1 烧结板状刚玉细粉加入量对试样性能的影响

表4示出了板状刚玉细粉加入量对试样物理性 能的影响。由表4可以看出 随着板状刚玉加入量的 增加 显气孔率逐渐升高 体积密度逐渐降低。这是

表 4 试样 A1—A5 的物理性能指标 Table 4 Physical properties of specimens A1—A5							
	A1	A 2	A3	A4	A5		
显气孔率/%	16	17	19	22	26		
体积密度/ (g•cm ⁻³)	2.99	2.96	2.91	2.80	2.63		
常温耐压强度/MPa	106	81	55	39	11		
荷重软化温度/℃ (0.2 MPa Ø.6%)	1 562	1 609	1 542	1 455	1 409		
抗热震性/次	2	20	13	11	1		

由于随着板状刚玉细粉加入量的增加,反应生成的镁 铝尖晶石含量增加,而镁铝尖晶石的合成是一个体积 膨胀的过程。常温耐压强度逐渐下降,荷重软化温度 和抗热震性都是先上升后下降。其中,板状刚玉细粉 加入量为6%(w)的试样 A2 的综合性能最好。

2.2 板状刚玉粒度对试样性能的影响

表 5 示出了板状刚玉不同粒度试样的物理性能。 可以看出 随着刚玉粒度的增大,显气孔率和体积密 度波动范围较小;常温耐压强度和荷重软化温度都是 先下降再上升;抗热震性呈下降趋势。

表 5 试样 B1—B4 的物理性能指标

Table 5 Physical properties of specimens B1-B4							
项目	B1	B2	В3	B4			
显气孔率/%	17	19	19	18			
体积密度/(g・cm ⁻³)	2.95	2.88	2.92	2.94			
常温耐压强度/MPa	74	58	59	70			
荷重软化温度/℃ (0.2 MPa 0.6%)	>1 700	1 643	1 668	>1 700			
抗热震性/次	18	18	8	6			

2.3 板状刚玉粒度对试样物相组成的影响

1 580 ℃ 4 h 烧后试样 B1—B4 的 XRD 图谱如 图 1所示。可以看出:试样 B1 和试样 B2 的主要物相 为氧化镁和镁铝尖晶石 并含有少量的铁铝尖晶石和 镁铁铝尖晶石固溶体 几乎没有看到刚玉衍射峰的存 在。这是因为试样 B1、B2 中加入的刚玉粒度较小, 于 1580 ℃反应较为完全。

试样 B3 和试样 B4 的主要物相为氧化镁和刚玉, 而镁铝尖晶石的衍射峰和镁铁铝尖晶石固溶体的衍 射峰较弱,因为试样 B3 和试样 B4 中加入的刚玉粒度 较大,因此反应较为困难,经4 h的保温后依然残留 有大部分的刚玉。

http://www.nhcl.com.cn 2014/6 耐火材料/REFRACTORIES 433

总之,试样 B1—B4 都有镁铝尖晶石的生成,— 般烧结法合成镁铝尖晶石的温度应该在 1 800 ℃以 上^[11] 而本试验中在 1 580 ℃保温 4 h 即有镁铝尖晶 石的生成,这大概是因为高铁镁砂中铁的扩散促进了 镁铝尖晶石的生成。随着刚玉粒度的增大,Mg、Fe、Al 各元素之间的扩散逐渐降低,从而导致反应生成的镁 铝尖晶石和镁铁铝尖晶石固溶体逐渐减少,刚玉相逐 渐增加。

2.4 烧结板状刚玉粒度对试样显微结构的影响

加入不同粒度烧结板状刚玉烧后试样的显微结 构如图 2 所示 其能谱分析如表 6 所示。

从图 2(a) 中可以看出,加入板状刚玉细粉试样 B1 的基质部分主体是氧化镁,对微区(点 1) 能谱分 析可知其为生成的镁铝尖晶石,同时含有微量铁,说

(c)试样B4

+7 +6 +5 BES 10kV WD10mm \$S67 x30 50 µm

(d)微区A的显微结构照片

图2 试样 B1、B2 和 B4 的 SEM 照片 Fig. 2 SEM photographs of specimens B1 B2 and B4 明铁的扩散促进了镁铝尖晶石的形成。整体来看,图 中镁铝尖晶石呈现较为均匀的分布,被镁砂所包围, 不见刚玉相的存在,说明加入 \leq 0.088 mm 刚玉细粉 的反应较为完全。对亮白色区域(点2)能谱分析发 现主要为 Ca、Si、Mg、O,这应该是原料中带入的钙硅 杂质所形成的硅酸盐相,其在图中主要填隙在晶粒与 晶粒的结合部分,呈孤岛状分布。砖内的硅酸盐相主 要为钙镁橄榄石和硅酸二钙,材料中液相量极少,这 有利于材料的高温性能。

图 2(b) 为高铁镁砂颗粒的微区图。明显可见其 中白色小亮点呈现两种分布状态,在点 3 位置亮点呈 团聚状态,另一种(如点 4)则是亮点均匀分布在镁砂 颗粒中。根据其聚集形态的不同可以分析,铁在镁砂 中有两种存在形式,一种是铁酸镁;另一种是镁铁富 士体。能谱还发现在点 3 和点 4 的位置都有少量 AI 存在,大概是因为刚玉细粉的扩散,在镁砂颗粒中生 成少量的镁铝尖晶石。

图 2(c) 为加入 3~2 mm 板状刚玉试样 B4 低倍 下的显微结构照片。可以看出 在刚玉颗粒周围形成 一圈尖晶石反应带。图 2(d) 为刚玉颗粒边缘反应带 的微观形貌图 ,对这块区域能谱分析发现 ,反应带靠 外侧(点5) 为镁砂 ,其中有及少量的刚玉;反应带中 间(点6) 为镁铝尖晶石;反应带靠内侧(点7) 为刚 玉。通过图中亮白色微区的分布情况也可以看出从 镁砂到刚玉 ,铁的含量是逐渐减少的。

表6 图2中各点的能谱分析 Table 6 EDS results of points in Fig.2

二主				w/%			
儿杀	1	2	3	4	5	6	7
0	56.94	59.70	49.86	50.02	51.72	56.35	58.25
Mg	13.85	6.20	40.74	45.58	47.37	14.91	2.03
Al	27.78	_	1.36	0.59	0.91	28.73	37.22
Fe	1.43	_	8.01	3.81	_	_	—
Ca	—	22.10	_	—	—	—	_
Si		12.03	_	_	—	_	—

434 NAHUO CALLAO / 耐火材料 2014 /6 http://www.nhcl.com.cn

综上所述 加入板状刚玉细粉的试样反应较为完 全,生成为镁铝尖晶石和铁铝尖晶石,几乎看不到刚 玉相的存在,这和前面的 XRD 结果也是相符的。而 加入刚玉颗粒的试样在刚玉周围形成一层镁铝尖晶 石反应带,并明显发现 Fe 扩散进入周边的刚玉中,伴 随着部分 Mg²⁺的扩散,同时少量 Al³⁺扩散进入镁砂 颗粒。这说明随着刚玉粒度的增加,反应程度下降, 加入的刚玉颗粒还剩有大量刚玉相;铁的存在促进了 镁铝尖晶石和镁铁尖晶石的合成,铁在镁砂中均匀分 布也起到改善方镁石抗热震性能和降低热导率等作 用。需要强调的是 Fe 离子、 Mg^{2+} 和 Al^{3+} 之间的相互 扩散是在高温下持续进行 同时由于尖晶石的生成产 生的微裂纹使得高铁镁砂-烧结刚玉复合耐火材料在 使用过程中具有良好的柔韧性^[12]。通过改变刚玉粒 度等工艺参数应该能获得综合性能优良的水泥窑内 衬材料。

3 结论

(1) 改变板状刚玉细粉加入量时,当加入量为6%(w),试样的综合性能最好。

(2)改变板状刚玉粒度,可以控制刚玉反应速度, 同时影响高铁镁砂中 Fe 的扩散。刚玉细粉几乎完全 反应为镁铝尖晶石和铁铝尖晶石,刚玉颗粒边缘会形 成一层反应带,并且颗粒越大反应程度越低。

(3)铁在方镁石中固溶度大,高铁镁砂的引入可以起到方镁石改性的作用。由于铁的氧化物的存在, 在烧结过程中 Fe 的扩散有利于镁铝尖晶石和铁铝尖 晶石的形成,即高铁镁砂-刚玉体系在高温下易于促 进镁铝尖晶石和铁铝尖晶石的形成。

参考文献

- [1] 李红霞,王金相.水泥窑用碱性耐火材料无铬化的技术进展 [J].中国水泥 2004(10):79-82.
- [2] Buchebner G ,arnuth H H ,Molam I T. Magnesia-hercynite bricks , an innovativeburnt basic refractory [C] //Proc of UNITECR'06 , Berlin ,Germany ,1999: 201 – 203.
- [3] Murolo P. First work experience with Japanese periclase spinel bricks in the burning zone of an Italian cement kiln [J]. Interceram [Special Issue on Refractories], 1984 33:6.
- [4] 郭宗奇.氧化镁-铁铝尖晶石耐火材料在水泥回转窑中的应用[J].中国水泥 2007(5):64-65.
- [5] 马淑龙,李勇,孙加林,等.添加 MgO 对铁铝尖晶石合成和烧结的影响[J].耐火材料 2010 44(5):334-337.
- [6] 张君博,张刚,肖国庆.铁铝尖晶石的制备[J]. 硅酸盐通报, 2007(10):1003-1006.
- [7] 陈俊红,封吉圣,孙加林,等.镁铁铝尖晶石砖的研制及在水泥 回转窑上的应用[J].耐火材料 2011 45(6):316-321.
- [8] 周勇、李楠. 镁砂与电熔合成铁铝尖晶石-刚玉复合材料的反应
 [J]. 耐火材料 2010 44(6):419-422.
- [9] Fumihito Ozeki ,Toshinori Shimizu ,Hisao Kozuka New. Magnesiaspinel brick for cement rotary kilns utilizing waste in large quantities [J]. Taikabustu 2002 22(2):147-152.
- [10] Nimura I Kume H Kenmochi I. Spinel brick for burning zone in cement rotary Kiln [J]. Taikabutsu ,1996 48(2): 78 – 79.
- [11] 张兴业. 镁铝尖晶石的合成和应用 [J]. 山东冶金,1996(8):11 -14.
- [12] Shubin V I ,Nikonorov. Periclase-spinel refractories for rotary cement kilns[J]. Refract Ind Ceram ,1996 ,37:1-2.

Effects of tabular corundum particle size and addition on properties of iron-rich magnesia-sintered corundum composite/Lin Xin ,Li Yong ,Li Yanjing ,Zhang Junjie ,Gao Changhe ,Zhang Jili//Naihuo Cailiao. – 2014 , 48(6):432

Abstract: Specimens were prepared using iron-rich magnesia (3 - 1, ≤ 1 , and ≤ 0.088 mm) and high purity magnesia (≤ 0.088 mm) as the main starting materials. The effects of particle size (3 - 2, 2 - 1, and ≤ 1 mm) and addition (3%, 6%, 9%, 12%, and 15% in mass the same hereinafter) of sintered tabular co-rundum on specimen properties were studied. The phase composition and microstructure of the specimens were analyzed. The results show that specimen with 6% corundum possesses the best performance: apparent porosity 16%, bulk density 2.99 g • cm⁻³, cold crushing strength 80.9 MPa ,refractoriness under load 1 609 °C thermal shock resistance 20 cycles; adjusting particle size of corundum can control the reaction speed and influence the diffusion of Fe in iron-rich magnesia; Fe has a large solid solution in periclase thus iron-rich magnesia can modify periclase; the formations of magnesium aluminate spinel and hercynite solid solution are accelerated at high temperatures in the iron-rich magnesia–corundum system at the presence of iron oxides.

Key words: iron-rich magnesia; sintered corundum; magnesium aluminate spinel; hercynite; cement kilns First author's address: School of Materials Science and Engineering ,University of Science and Technology Beijing ,Beijing 100083 ,China

http://www.nhcl.com.cn 2014/6 耐火材料/BEFFACTORIES 435