文章编号:1000-7571(2013)07-0062-06

X 射线荧光光谱法测定镁质耐火材料及 其原料中 10 种成分

赵恩 f^1 ,岳明新¹,周国兴¹,肖 刚¹,张 泉¹,刘 新²

(1. 沈阳地质矿产研究所,辽宁沈阳 110032;2. 东煤地质局沈阳测试中心,辽宁沈阳 110032)

摘 要:采用熔融制样,建立了镁质耐火材料(制品镁砖等)及其原料(水镁石,原料镁砂等)中 MgO、Al₂O₃、SiO₂、CaO、P₂O₅、TiO₂、TFe₂O₃、Na₂O、K₂O、MnO 的 X 射线荧光光谱分析方 法。与以往方法相比,增加了 Na₂O、K₂O 的含量测试,为最终对于 MgO 的准确测试提供了依 据。对高镁样品(MgO 含量大于 90%)的熔剂体系、样品与熔剂稀释比等方面进行了考察,同 时对水镁石、菱镁矿等高烧失量样品的烧失量校正进行了探讨。采用国家标准样品 GBW07105 和高纯镁砂配制的系列校准样品来建立校准曲线,用经验系数法回归校正共存元 素间的吸收增强效应。方法的检出限在 0.031%~0.45%之间。对样品进行了精密度试验, 各成分的相对标准偏差(RSD,n=10)在 0.31%~3.4%之间。对人工合成样品及标准样品进 行测试,结果与湿法测定结果吻合。

镁质耐火材料广泛应用于氧气转炉、电炉、平 炉、钢包、炉外精炼及有色熔炼等工艺过程中,其 作为钢铁工业不可缺少的基础材料,对提高钢的 质量和降低炼钢成本起着重要作用。利用传统的 化学方法,比如 GB/T 5069 - 2007(镁铝系耐火 材料化学分析方法)、YB/T 4004-4013(优质镁 砂化学分析方法)及原子吸收光谱法[1]等测试样 品中的 Fe、K、Na、Mg、Ca 等成分,因绝大部分耐 火材料制品和原料不被酸完全溶解,而使试样处 理繁琐,且大多需分离干扰元素,分析速度慢,成 本高。X射线荧光光谱法(XRF)以其灵敏、简便、 快捷、分析元素范围宽等特点認被广泛应用于无 机非金属材料研究,而其应用于耐火材料性质研 究和成分分析[3-7]也有一定进展。本文通过人工 合成校准样品建立校准曲线,增加了 Na₂O、K₂O 的含量测试,进一步保证了对主成分 MgO 测试 的准确性。

1 实验部分

1.1 仪器和测量条件

Axios 型顺序式 X-射线荧光光谱仪(荷兰帕 纳科公司):以 Rh 靶 X-射线管为激发源,SuperQ 软件;固态高频熔样机(成都贵恒科技有限公司)。 具体测量条件见表 1。

1.2 试剂

X 射线荧光光谱专用熔剂(洛阳耐研工贸公 司提供): $m(Li_2 B_4 O_7): m(LiBO_2): m(LiF) =$ 65:25:10;NH₄Br(固体)。

1.3 标准样品

采用的国家标准物质有 GBW07105、 GBW03128、高纯镁砂(YSBC13801-94)、镁砂 424 等4种,其中 GBW07105 和高纯镁砂(YS-BC13801-94)用于合成人工标准样品^[8],即将这 两种标准物质按一定的质量配比混合后,用玛瑙 研钵研磨均匀,制成编号为 $1^{+} \sim 12^{+}$ 等 12 种校

收稿日期:2012-11-19

作者简介:赵恩好(1981-),男,本科,工程师,主要从事化学分析工作;E-mail:wind31333@163.com

— 62 —

表1 仪器测试条件

准样品,其中1[#]~10[#]用于建立校准曲线。合成 人工校准样品的具体配制和成分含量见表2。

Table 1 Test conditions of the instrument												
元素 Element	<mark>谱线</mark> Line	晶体 Crystal	20/	(°)	测量时间 Measuring time/s		DUA	狭缝	检测器	电压	电流	滤光片
			检测角 Angle	背景偏角 BG offset	测量 Measuring	背景 BG	- РПА	Slit /μm	Detector	/kV	/mA	Filter
Na ₂ O	Κα	PX1	27.0622	2.0376	60	32	$24 \sim 68$	550	Flow	30	120	None
MgO	Κα	$\mathbf{PX1}$	22.394 6	2, 337 8	20	12	$23 \sim 76$	550	Flow	30	120	None
Al_2O_3	Kα	PE002	144.9084	-1.1722	26	14	$22\!\sim\!70$	550	Flow	30	120	None
SiO_2	Kα	PE002	109.114 8	2,183 0	20	16	$25\!\sim\!78$	550	Flow	30	120	None
P_2O_5	Kα	Ge111	140.9856	1.9102	26	14	$23 \sim 70$	550	Flow	30	120	None
K_2O	Kα	LiF200	136.7310	-1.066 0	20	16	$24\!\sim\!67$	150	Flow	30	120	None
CaO	Kα	LiF200	113.1232	-0.8852	20	14	$24\!\sim\!70$	150	Flow	30	120	None
${\rm TiO}_2$	Kα	LiF200	86.1388	— 1. 141 4	20	14	$23 \sim 66$	150	Flow	40	90	None
TFe_2O_3	Kα	LiF200	57.514 2	0.7792	30	16	$34\!\sim\!68$	150	Duplex	60	60	Al(200µm)
Mn	Κα	LiF200	62,972 0	0.7072	30	16	$30 \sim 67$	150	Duplex	60	60	Al(200µm)

表 2 人工校准样品主要成分含量 Table 2 The content of major components of artificial calibration sample

样品编号	质量 Mass/g		含量 Content $w/\%$									
Sample No.	YSBC 13801-94	GBW07105	$\mathrm{Na}_{2}\mathrm{O}$	MgO	$\mathrm{Al}_2\mathrm{O}_3$	${ m SiO}_2$	P_2O_5	K_2O	CaO	${\rm TiO}_2$	$\mathrm{TFe}_2\mathrm{O}_3$	MnO_2
1 #	0.3000	0.7000	2.37	35.44	9.68	31.25	0.67	1.62	6.17	1.66	9.38	0.112
2 #	0.4000	0.6000	2.03	44.66	8.30	26.78	0.57	1.39	5.29	1.42	8.04	0.096
3 #	0.5000	0.5000	1.69	53.89	6.92	22.32	0.48	1.16	4.41	1.19	6.70	0.080
4 #	0.6000	0.4000	1.35	63.11	5.53	17.86	0.38	0.93	3.52	0.95	5.36	0.064
5 #	0.6800	0.3200	1.08	70.49	4.43	14.28	0.30	0.74	2.82	0.76	4.29	0.051
6 #	0.7000	0.3000	1.01	72.33	4.15	13.39	0.29	0.70	2.64	0.71	4.02	0.048
7 #	0.7200	0.2800	0.95	74.18	3.87	12.50	0.27	0.65	2.47	0.66	3.75	0.045
8 #	0.8000	0.2000	0.68	81.55	2.77	8.93	0.19	0.46	1.76	0.47	2.68	0.032
9 #	0.9000	0.1000	0.34	90.78	1. 38	4.46	0.095	0.23	0.88	0.24	1.34	0.016
10#	0.9800	0.0200	0.068	98.16	0.28	0.89	0.019	0.046	0.18	0.05	0.27	0.003
11#	0.75	0.25	0.85	76.94	3.46	11.16	0.24	0.58	2.21	0.60	3.35	0.040
12#	0.95	0.05	0.17	95.39	0.69	2.23	0.048	0.12	0.44	0.12	0.67	0.008

1.4 样品制备

准确称取 5.000 g 熔剂,0.250 0 g 样品于铂 金(Pt 95%,Au 5%)坩埚中,搅拌均匀,置于自动 熔融机上,启动摇动装置,于 1 150℃ 熔融 8 min^[9],在摆动旋转停止前 10 s 左右,往坩埚中加 入少量固体 NH₄Br,摆动停止后,用坩埚钳取下 坩埚并加以摇动,赶尽气泡后放置。待熔融物充 分冷却后,取出均匀、透明、表面光洁、无可见晶斑 的熔片后,贴上标签待测。

2 结果与讨论

2.1 熔剂选择

熔融法具有消除基体及粒度效应影响等优 点,同时,样片的耐辐射能力好,参照文献[10],经 初级线照射 20 h,样品无明显变化。试验发现, 随着试样中镁含量的增加,X 射线荧光光谱专用 熔剂($Li_2 B_4 O_7 : LiBO_2 : LiF = 65 : 25 : 10$)中 $LiBO_2 和 LiF$ 的含量应相应的减少,尤其是在镁含 量达到 90%以上时,熔剂中二者的存在可能造成 晶斑,导致熔片破碎,因此,此时单独以 $Li_2 B_4 O_7$ 作 熔剂,可以获得符合测试要求的玻璃熔片。

2.2 稀释比

试验发现,在样品和熔剂的稀释比例比较低 的情况下,容易造成玻璃片的透明度不好或者有 絮状体夹杂等不利于后续测试的现象出现,实验 加大了二者的稀释比例。

在保证测试质量的前提下,对样品与熔剂稀 释比例为1:10和1:20的熔片方案进行了比

— 63 —

较,结果发现,在校准曲线的线性范围内,两种稀释比时测试元素的准确度和精密度差别不大,但稀释比为1:10时由于镁元素所占比例加大而使熔片难度加大,其主要表现是玻璃片容易碎裂,而 1:20的稀释比更有利于减弱共存元素间的吸收与增强效应。故方法中选择1:20的稀释比。

2.3 烧失量的校正

由于水镁石和菱镁石等样品的烧失量高达 50%以上,对测量结果影响显著,故在实验中应先 进行样品的烧失量校正。参照文献[11],准确称 取一定质量的有烧失量的样品于1000℃灼烧至 恒重。对于含有烧失量的标准样品,绘制校准曲 线时的质量分数应是经过烧失量校正后的质量分 数,其校正按式(1)和式(2)计算。

$$w_{k\bar{k}} = x_{k\bar{k}} / K \tag{1}$$

式中: w_{k} 为经过烧失量校正后标样的质量分数; x_{k} 为校正前标样的推荐值;K为烧失量校正系数。

$$K = m_{\text{Kef}} / m_{\text{Kf}} = 1 - w_{\text{loss}} \tag{2}$$

式中 : *w*_{loss} 为 烧 失 量 ; *m*_{烧后} 为 灼 烧 后 样 品 质 量 ; *m*_{烧前} 为灼烧前样品质量 。

测量样品时,烧失量校正根据式(2)和式(3) 计算。

 $w_i = x_i \times K \tag{3}$

式中:*w*_i为经过烧失量校正后的分析结果;*x*_i为校 正前的结果。

2.4 校准曲线绘制和背景及基体效应校正

根据校准样品中各元素分析线的净强度 (Kcps)和质量分数(w/%)相对应绘制校准曲线, 线性回归公式为:

 $C_i = D_i + E_i \times R_i \times (1 + M_i)$ (4) 式中: C_i 为样品中元素 *i* 的含量; R_i 为元素 *i* 的净 强度; M_i 为吸收增强效应校正系数; D_i 为曲线截 距; E_i 为曲线斜率。公式只针对某元素,而且"1+ M_i "与公式(5)意义相同。

实验采用经验系数法进行线性回归,以校正 共存元素的吸收增强效应和谱线重叠效应^[12]。 SuperQ软件中共存元素间的吸收增强效应校正 公式见式(5):

$$1 + M_{i} = 1 + \sum_{j=1}^{n} a_{ij}C_{j} + \sum_{j=1}^{n} \frac{\beta_{ij}C_{j}}{1 + \delta_{ij}C_{j}} + \sum_{j=1}^{n} \sum_{k=1}^{n} \gamma_{i,j,k}C_{j}C_{k}$$

$$(5)$$

$$- 64 -$$

式中:C为浓度或计数率;n为待分析元素数; α , β , γ , δ 为用于基体校正的系数;j,k为共存元素。

试验表明,将烧失量作为消去组分处理,烧失 量校正后的校准曲线比烧失量校正前的校准曲线 线性要好。

2.5 检出限

检出限(LLD)根据公式(6)^[14]进行计算。

$$LLD = \frac{3\sqrt{2}}{m} \sqrt{\frac{I_b}{t_b}}$$
(6)

式中:m为单位含量的计数率; I_b 为背景计数 率; t_b 为峰值和背景总计数时间(s)。

通过以上公式,为保证含量计数率和背景计 数率较好的检出效果,利用6[#]样品测试参数来计 算该方法各成分的检出限,见表3。

表 3 各成分的检出限

Table 3 The low limit of determination of

each component

一 元素	检出限 LLD						
Element	·W/ /0						
Na_2O	0.019						
MgO	0.012						
$\mathrm{Al}_2\mathrm{O}_3$	0.026						
${ m SiO}_2$	0.017						
$P_2 O_5$	0.006 2						
$ m K_2O$	0.0076						
CaO	0.018						
${ m TiO_2}$	0.006 4						
TFe_2O_3	0.0056						
MnO_2	0.0031						

2.6 方法的精密度

按1.4 样品制备条件对5[#] 样品融片10个, 按表1的测量条件对样品进行分析,计算各元素 测定值的相对标准偏差(RSD),结果见表4。

2.7 方法的准确度

采用实验方法对标准样品镁砂 424、 GBW03128 以及人工合成标样 11[#]进行测试,结 果见表 5。为提高分析准确度,将 MgO 分成两段 绘制工作曲线^[14]。

2.8 结果比对

将 11[#],12[#],GBW03128 通过本方法和湿法 进行测试,结果见表 6。通过数据比较,发现两种 方法的结果符合度良好,证明该方法的可行性。

赵恩好,岳明新,周国兴,等.X射线荧光光谱法测定镁质耐火材料及其原料中 10种成分. 冶金分析,2013,33(7):62-67

Table 4 Precision test								
组分 Component	测定值 Found w/%	平均值 Average w/%	RSD / %					
Na_2O	1. 03, 1. 06, 1. 11, 1. 07, 1. 04, 1. 06, 1. 10, 1. 02, 1. 08, 1. 09	1. 07	2.8					
MgO	70. 19,70. 69,70. 32,70. 66,70. 88,70. 22,70. 39,70. 49,70. 46,70. 61	70.50	0.31					
$\mathrm{Al}_2\mathrm{O}_3$	4. 26, 4. 52, 4. 55, 4. 39, 4. 52, 4. 36, 4. 48, 4. 55, 4. 52, 4. 37	4. 45	2.2					
SiO_2	14. 36,14. 29,14. 21,14. 22,14. 32,14. 29,14. 22,14. 09,14. 18,14. 30	14.25	0.56					
P_2O_5	0. 31,0. 31,0. 32,0. 29,0. 30,0. 29,0. 31,0. 30,0. 30,0. 31	0.30	3. 2					
K_2O	0. 72,0. 76,0. 73,0. 75,0. 74,0. 74,0. 73,0. 75,0. 71,0. 73	0.74	2.1					
CaO	2, 69, 2, 88, 2, 76, 2, 91, 2, 88, 2, 76, 2, 84, 2, 79, 2, 88, 2, 86	2.83	2.5					
TiO_2	0. 79,0. 76,0. 77,0. 74,0. 73,0. 76,0. 76,0. 77,0. 75,0. 75	0.76	2.2					
Fe_2O_3	4. 12, 4. 41, 4. 32, 4. 22, 4. 28, 4. 32, 4. 25, 4. 39, 4. 22, 4. 22	4. 28	2.1					
MnO	0. 049,0. 053,0. 051,0. 051,0. 052,0. 052,0. 051,0. 053,0. 048,0. 049	0.051	3.4					

表 4 精密度试验

表 5 准确度试验

		$w/ \frac{0}{0}$					
	镁砂	424	GBW	03128	11#		
组分 - Component	认定值 Certified	测定值 Found	认定值 Certified	测定值 Found	认定值 Certified	测定值 Found	
Na ₂ O					0.85	0.84	
MgO	97.37	97.13	61.43	62.06	76.94	76.62	
$\mathrm{Al}_2\mathrm{O}_3$	0.29	0.28			3.46	3. 23	
SiO_2	1.00	0.96	2.69	2.57	11.16	11.02	
$P_2 O_5$			0.12	0.11	0.24	0.25	
$ m K_2O$					0.58	0.58	
CaO	0.26	0.27	2.51	2.59	2.21	2.32	
${\rm TiO}_2$					0.60	0.62	
TFe_2O_3	0.66	0.64	0.49	0.47	3.35	3.58	
MnO_2			0.036	0.035	0.04	0.042	

表 6 湿法与 XRF 方法测试结果比较

组分

Table 6 Results comparison between wet method and XRF 11# 12# GBW03128 湿法 水RF 湿法 水RF 0.86 0.87 0.17 0.16

Component	湿法 Wet method	XRF	湿法 Wet method	XRF	湿法 Wet method	XRF	
Na ₂ O	0.86	0.87	0.17	0.16			
MgO	77.26	76.58	95.46	95.86	61.62	61.22	
Al_2O_3	3.52	3. 42	0.68	0.71	0.055	0.056	
SiO_2	10.99	11.66	2.30	2. 22	2.73	2.77	
P_2O_5	0.25	0.23	0.047	0.047	0.12	0.13	
K_2O	0.58	0.59	0.12	0.13			
CaO	2, 23	2.21	0.45	0.46	2.53	2.42	
${\rm TiO}_2$	0.62	0.64	0.13	0.11			
TFe_2O_3	3.40	3.52	0.68	0.68	0.50	0.47	
MnO_2	0.41	0.42	0.008	0.009	0.037	0.038	

注:①"——"表示测试成分未达到方法的检出限;②湿法中:TFe₂O₃采用化学滴定法,Na₂O₅K₂O采用原子吸收光 谱法,MgO₅Al₂O₃、SiO₂、P₂O₅、CaO₅TiO₂、MnO₂采用 ICP-AES 法。

— 65 —

w/%

3 结论

利用国家标准样品 GBW07105 和高纯镁砂 (YSBC13801-94)配制成系列校准样品,该系列校 准样品梯度合理,线性范围宽。针对不同梯度标 准样品中镁含量的不同,对熔片的熔剂配比和稀 释比做了选择,最终能够很好满足熔片的要求。 准确度和精密度实验结果表明该方法能够满足 X 射线荧光光谱对于镁质耐火材料(制品镁砖等)及 其原料(水镁石,原料镁砂等)的测试需要。该方 法已经被大连海关实验室采用,使用效果良好。

参考文献:

- [1] 边立槐,朱建筑,袁亦秋. 镁质耐火材料氧化镁含量化
 学分析方法的改进[J]. 天津冶金(Tianjin Metallurgical),2002,4;8-10.
- [2] 王立新,王烽,曹吉祥,等. 冶金仪器分析技术与应用
 [M].北京:化学工业出版社,2010.
- [3] Hideo Asakura, Katsusige Ikegami, Mamoru Murata, et al. Determination of components in refractories containing zirconia by x-ray fluorescence spectrometry
 [J]. X-ray Spectrometry, 2000, 29:418-425.
- [4] 王本辉,郭红丽,胡坚. X 射线荧光光谱法测定氧化锆 质耐火材料中主次成分[J]. 冶金分析(Metallurgical Analysis),2010,30(1);39-42.
- [5] 宋祖峰,阚斌,陈健. 镁铝铬质耐火材料的 X 射线荧光 光谱快速分析[J]. 理化检验-化学分册(Physical Tes-

ting and Chemical Analysis :Part B Chemical Analysis),2005,41(9):648-653.

- [6] Lili Vuchkova, Juri Jordanov. Fusion method for prepraration of refractory nickel based alloy powders for X-ray fluorescence spectrometry [J]. Analyst, 2000, 125:1681-1685.
- [7] 蔡军,范旭红,薛莹. X 射线荧光光谱法测定电熔镁砂 的主次成分[J]. 江苏冶金(Jiangsu Metallurgy), 2006,34(3):45-47.
- [8] 田琼,张文昔,宋嘉宁,等. 波长色散 X 射线荧光光谱 法测定锌精矿中主次量成分[J]. 岩矿测试(Rock and Mineral Analysis),2012,31(3):463-467.
- [9] 唐红霞,付宝荣. X 射线荧光光谱法测定镁质耐火材 料中的多元素[J]. 甘肃冶金(Gansu Metallurgy), 2011,33(6):91-93.
- [10] 伯廷. X 射线光谱分析的原理和应用[M]. 李瑞成,鲍永夫,吴敏林,译. 北京:国防工业出版社,1983.
- [11] 张鹏,曲月华,王一凌.X 射线荧光光谱法测定镁砂、
 镁石及菱镁矿中主次成分[J]. 冶金分析(Metallurgical Analysis),2010,30(9):28-31.
- [12] 谢忠信,赵宗铃,张玉斌,等.X 射线光谱分析[M]. 北京:科学出版社,2007:465-507.
- [13] 李迎春,周伟,王健,等.X 射线荧光光谱法测定高锶 高钡的硅酸盐样品中主量元素[J]. 岩矿测试(Rock and Mineral Analysis),2013,32(2):249-253.
- [14] 张香荣,陈洁,张立新. 铝质、硅质和镁质耐火材料的 X 射线荧光光谱快速分析[J]. 冶金分析(Metallurgical Analysis),2005,25(1):13-18.

Determination of ten components in magnesia refractory materials and raw materials by X-ray fluorescence spectrometry

ZHAO En-hao¹, YUE Ming-xin¹, ZHOU Guo-xing¹, XIAO Gang¹, ZHANG Quan¹, LIU Xin²

(1. Shenyang Institute of Geology and Mineral Resources, Shenyang 110032, China;

2. East Coal Geological Bureau of Shenyang Testing Center, Shenyang 110032, China)

Abstract: The sample was prepared by fusion method. The analysis of MgO, Al_2O_3 , SiO_2 , CaO, P_2O_5 , TiO_2 , TFe_2O_3 , Na_2O , K_2O and MnO in magnesia refractory materials(magnesium brick products) and raw materials (brucite and raw magnesite etc.) by X-ray fluorescence spectrometry was established. Compared with previous methods, the content test of Na₂O and K₂O was added. It provided basis for the final accurate test of MgO. The flux system for high magnesium sample (the content of MgO was higher than 90 %) as well as the dilution ratio between sample and flux were discussed. Meanwhile, the correction of loss on ignition for samples with high ignition loss (such as brucite and - 66 -

magnesite) was also investigated. The calibration curves of the method were established with series calibration samples prepared by national standard sample GBW07105 and high-purity magnesia. The absorption enhancement effect among coexisting elements was regressed and corrected by empirical coefficient method. The detection limit of method was between 0.031 % and 0.45 %. The precision test of sample was conducted. The relative standard deviation (RSD, n = 10) of each components was 0.31 %-3.4 %. Synthetic samples and CRM were tested, and the results were consistent with those obtained by wet method.

Key words: X-ray fluorescence spectrometry; fusion method; magnesia refractory materials and raw materials; loss on ignition

《冶金分析》征稿启事

《冶金分析》由中国钢研科技集团有限公司(钢铁研究总院)和中国金属学会主办,国际钢铁工业分 析委员会(ICASI)支持。本刊旨在动态反映冶金领域分析测试新技术、新方法、先进经验,报导研究成 果,发表综述文章,并介绍国内外冶金分析动态等,适合于冶金、矿山、石油、化工、机械、地质、环保、商检 等领域或部门的技术人员及大专院校师生阅读和参考。

《冶金分析》1981年创刊,2007年起改为月刊,自 2008年起为国际读者提供英文对照版。据 2012 年版《中国科技期刊引证报告》(核心版),本刊 2011年度影响因子为 0.717,在"冶金工程技术"类 26 种 期刊中名列第 4;在 1998种中国科技核心期刊中,本刊综合评价总分排名第 208。本刊是中国科技论文 统计源期刊、中国科学引文数据库的核心库期刊、全国中文核心期刊、美国"CA"千种表中国化工类核心 期刊,自 1994年就为美国工程信息公司 EI 数据库收录,2009年起被 ELSEVIER 旗下的 SCOPUS 数据 库收录,并为中国知网(CNKI)、万方数据资源系统、中文科技期刊数据库等国内知名数据库所收录。

作为冶金领域中权威的分析技术专业期刊,《冶金分析》的办刊宗旨是为广大冶金分析测试工作者 搭建学术交流平台,以最快的速度及时发表国内外的最新研究成果。

1 征稿范围

冶金及材料化学成分分析测试技术与方法、冶金过程与环保检测、形态/状态分析、表面/界面及形 貌分析等方面具有一定创新性、先进性的研究成果,实验室管理、标准物质研制、能力验证与质量控制方 案的应用与创新,仪器设备的研制与技术改进,综述与评论等。

2 稿件篇幅

本刊研究与试验报告的印刷版一般为 $3 \sim 4$ 页,约 $5 000 \sim 6 000$ 字;综述与评论的印刷版一般为 $4 \sim 8$ 页,不超过 8 000 字。

3 来稿要求

来稿应观点明确,数据准确、完整,文字精炼通顺,层次清晰,结构严谨。文题应简单明确,能反映和 概括研究主要内容和特色,切忌过于笼统,避免使用副标题;题目及关键词不能用缩略语、商品名及分子 式;标题、作者信息、摘要与关键词须与中文对应翻译为英文,置于全文后。

4 声明

为扩大本刊所载论文在国内外的学术影响,促进科技信息的广泛交流,本刊已同意国内外有关检索 刊物、中国知网(CNKI)、万方数据资源系统、中文科技期刊数据库等摘引或转载本刊所登论文。凡投 寄我刊稿件,本刊将视为已许可上述出版物引用。本刊所付稿酬已包括上述出版物稿酬。

衷心欢迎广大科技工作者踊跃来稿。

冶金分析编辑部

地址:北京市海淀区学院南路 76 号 邮 编:100081

网址:http://www.chinamet.cn E-mail:yjfx@analysis.org.cn;

电话:010-62182398/62181032 yejinfenxi@ncschina.com

— 67 —